an=⎩⎨⎧an timesa⋅a⋅…⋅aif n=1if n∈N,n≥2
a0=1∀a∈R∖{0}
a−n=an1∀a∈R∖{0},n∈N
am/n=nam=(na)m∀n∈N,n≥2
P=anwhere: a∈R,n∈N,P∈R
- a: base
- n: natural exponent
- P: power
- Product of equal bases:
xm⋅xn=xm+nx∈R,m,n∈N
- Exponent of an exponent:
(xm)n=xm⋅nx∈R,m,n∈N
(((am)n)r)s=am⋅n⋅r⋅s
- Exponent of a product:
(a⋅b)n=an⋅bna,b∈R,n∈N
(xa⋅yb)n=xa⋅n⋅yb⋅n
- Division of equal bases:
anam=am−nm,n∈N,m≥n,a∈R∖{0}
- Exponent of a quotient:
(ba)n=bnann∈N,b∈R∖{0}
- Negative exponent of a fraction:
(ba)−n=(ab)n=anbna,b=0
y=nx⟺yn=xn∈N,n≥2
- Root of a product:
na⋅b=na⋅nb
If n is even, then a≥0 and b≥0.
- Root of a quotient:
nba=nbnab=0
If n is even, then a≥0 and b>0.
- Root of a root:
mna=m⋅nam,n∈N
If m⋅n is even, then a≥0.
mnsra=m⋅n⋅s⋅ra
- Root of a power:
(na)m=nam
abxac=bxcIf ab is even, then x∈R0+
na⋅mb⋅pc=na⋅n⋅mb⋅n⋅m⋅pc
- Equality of bases:
am=an⟹m=n(a=0,1)
- Equality of exponents:
am=bm⟹a=b(m=0)
- Special case:
ax=xa⟹a=x(x=0)
- Exponential form:
xx=an⟹x=a
- Radical form:
xx=n⟹x=xn